Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Hierarchical Decision Making in Stochastic Manufacturing Systems

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

One of the most important methods in dealing with the optimization of large, complex systems is that of hierarchical decomposition. The idea is to reduce the overall complex problem into manageable approximate problems or subproblems, to solve these problems, and to construct a solution of the original problem from the solutions of these simpler prob­ lems. Development of such approaches for large complex systems has been identified as a particularly fruitful area by the Committee on the Next Decade in Operations Research (1988) [42] as well as by the Panel on Future Directions in Control Theory (1988) [65]. Most manufacturing firms are complex systems characterized by sev­ eral decision subsystems, such as finance, personnel, marketing, and op­ erations. They may have several plants and warehouses and a wide variety of machines and equipment devoted to producing a large number of different products. Moreover, they are subject to deterministic as well as stochastic discrete events, such as purchasing new equipment, hiring and layoff of personnel, and machine setups, failures, and repairs.

Informacija

Autorius: Qing Zhang, Suresh P. Sethi,
Serija: Systems & Control: Foundations & Applications
Leidėjas: Birkhäuser Boston
Išleidimo metai: 1994
Knygos puslapių skaičius: 444
ISBN-10: 0817637354
ISBN-13: 9780817637354
Formatas: 241 x 160 x 29 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hierarchical Decision Making in Stochastic Manufacturing Systems“

Būtina įvertinti prekę