Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Hamiltonian Group Actions and Equivariant Cohomology

-15% su kodu: ENG15
93,58 
Įprasta kaina: 110,09 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
93,58 
Įprasta kaina: 110,09 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 110.0900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry.

Informacija

Autorius: Shubham Dwivedi, Theo van den Hurk, Lisa C. Jeffrey, Jonathan Herman,
Serija: SpringerBriefs in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2019
Knygos puslapių skaičius: 144
ISBN-10: 3030272265
ISBN-13: 9783030272265
Formatas: 235 x 155 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Hamiltonian Group Actions and Equivariant Cohomology“

Būtina įvertinti prekę

Goodreads reviews for „Hamiltonian Group Actions and Equivariant Cohomology“