Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

H¿-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach

-15% su kodu: ENG15
115,18 
Įprasta kaina: 135,50 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
115,18 
Įprasta kaina: 135,50 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 135.5000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

¿I believe that the authors have written a first-class book which can be used for a second or third year graduate level course in the subject... Researchers working in the area will certainly use the book as a standard reference....¿ SIAM Review (Review of the First Edition) ¿This book is devoted to one of the fastest developing fields in modern control theory---the so-called 'H-infinity optimal control theory'... In the authors' opinion 'the theory is now at a stage where it can easily be incorporated into a second-level graduate course in a control curriculum'. It seems that this book justifies this claim.¿ Mathematical Reviews (Review of the First Edition) ¿This book is a second edition of this very well-known text on H-infinity theory...This topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with this important theoretical development in applied mathematics and control.¿ Short Book Reviews (Review of the Second Edition)

Informacija

Autorius: Pierre Bernhard, Tamer Ba¿ar,
Serija: Modern Birkhäuser Classics
Leidėjas: Birkhäuser Boston
Išleidimo metai: 2008
Knygos puslapių skaičius: 428
ISBN-10: 0817647562
ISBN-13: 9780817647568
Formatas: 235 x 155 x 24 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „H¿-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach“

Būtina įvertinti prekę

Goodreads reviews for „H¿-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach“