Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
This timely text/reference describes the development and implementation of large-scale distributed processing systems using open source tools and technologies. Comprehensive in scope, the book presents state-of-the-art material on building high performance distributed computing systems, providing practical guidance and best practices as well as describing theoretical software frameworks. Features: describes the fundamentals of building scalable software systems for large-scale data processing in the new paradigm of high performance distributed computing; presents an overview of the Hadoop ecosystem, followed by step-by-step instruction on its installation, programming and execution; Reviews the basics of Spark, including resilient distributed datasets, and examines Hadoop streaming and working with Scalding; Provides detailed case studies on approaches to clustering, data classification and regression analysis; Explains the process of creating a working recommender system using Scalding and Spark.
Autorius: | Anil Kumar Muppalla, K. G. Srinivasa, |
Serija: | Computer Communications and Networks |
Leidėjas: | Springer Nature Switzerland |
Išleidimo metai: | 2015 |
Knygos puslapių skaičius: | 324 |
ISBN-10: | 3319134965 |
ISBN-13: | 9783319134963 |
Formatas: | 241 x 160 x 24 mm. Knyga kietu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Guide to High Performance Distributed Computing: Case Studies with Hadoop, Scalding and Spark“