Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Groups of Transformations in Finslerian saces, Basic Concepts of Finslerian Geometry: An Axiomatic Approach to Tensors

-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 70.5300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Infinitesimal transformations defining motions, affine motions, projective motions, conformal transformations and curvature collineations in various types of Finslerian spaces are discussed here. The notation and symbolism used is mainly based on [60] and author''s works [24] ¿ [42]. The present article offers an exposition of the axiomatic definition of tensors and their further developments from this very standpoint. Various types of tensor sand their examples have been included. A systematic study of manifolds endowed with a metric defined by the positive fourth-root of a 4th degree differential form was considered by P. Finsler in 1918, after whom such manifolds were eventually named. Thereafter, several geometers: E. Cartan, L. Berwald, J.A. Schouten, J. Douglas, W. Barthel, H. Rund, A. Lchnerowicz, A. Kawaguchi, H. Busemann, A. Moór, K. Takano, S.S. Chern, M.S. Knebelman etc. explored this domain extensively. The first treatise on the subject (in English) was published by Rund in 1959. Main aspects of the theory are presented here more elegantly and briefly.

Informacija

Autorius: Ram Bilas Misra
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2011
Knygos puslapių skaičius: 64
ISBN-10: 3844304355
ISBN-13: 9783844304350
Formatas: 220 x 150 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Groups of Transformations in Finslerian saces, Basic Concepts of Finslerian Geometry: An Axiomatic Approach to Tensors“

Būtina įvertinti prekę