Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

-15% su kodu: ENG15
182,62 
Įprasta kaina: 214,85 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
182,62 
Įprasta kaina: 214,85 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 214.8500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well-known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

Informacija

Autorius: Madeleine Udell, Corinne Horn, Reza Zadeh,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2016
Knygos puslapių skaičius: 142
ISBN-10: 1680831402
ISBN-13: 9781680831405
Formatas: 234 x 156 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Generalized Low Rank Models“

Būtina įvertinti prekę

Goodreads reviews for „Generalized Low Rank Models“