From Global to Local Statistical Shape Priors: Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.

Informacija

Autorius: Carsten Last
Serija: Studies in Systems, Decision and Control
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2018
Knygos puslapių skaičius: 284
ISBN-10: 3319851691
ISBN-13: 9783319851693
Formatas: 235 x 155 x 16 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „From Global to Local Statistical Shape Priors: Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes“

Būtina įvertinti prekę

Goodreads reviews for „From Global to Local Statistical Shape Priors: Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes“