Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

From Content-based Music Emotion Recognition to Emotion Maps of Musical Pieces

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The problems it addresses include emotion representation, annotation of music excerpts, feature extraction, and machine learning. The book chiefly focuses on content-based analysis of music files, a system that automatically analyzes the structures of a music file and annotates the file with the perceived emotions. Further, it explores emotion detection in MIDI and audio files. In the experiments presented here, the categorical and dimensional approaches were used, and the knowledge and expertise of music experts with a university music education were used for music file annotation. The automatic emotion detection systems constructed and described in the book make it possible to index and subsequently search through music databases according to emotion. In turn, the emotion maps of musical compositions provide valuable new insights into the distribution of emotions in music and can be used to compare that distribution in different compositions, or to conduct emotional comparisons of different interpretations of the same composition.

Informacija

Autorius: Jacek Grekow
Serija: Studies in Computational Intelligence
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2018
Knygos puslapių skaičius: 152
ISBN-10: 3319889680
ISBN-13: 9783319889689
Formatas: 235 x 155 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „From Content-based Music Emotion Recognition to Emotion Maps of Musical Pieces“

Būtina įvertinti prekę

Goodreads reviews for „From Content-based Music Emotion Recognition to Emotion Maps of Musical Pieces“