Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Formulizing Co-Clusters &Selection Methods Based On SVD in Data Mining

-20% su kodu: BOOKS
45,94 
Įprasta kaina: 57,42 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
45,94 
Įprasta kaina: 57,42 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Traditional clustering and feature selection methods consider the data matrix as static. However, the data matrices evolve smoothly over time in many applications. A simple approach to learn from these time-evolving data matrices is to analyze them separately. Such strategy ignores the time-dependent nature of the underlying data. We propose two formulations for evolutionary co-clustering and feature selection based on the fused Lasso regularization. The evolutionary co-clustering formulation is able to identify smoothly varying hidden block structures embedded into the matrices along the temporal dimension. Our formulation is very flexible and allows for imposing smoothness constraints over only one dimension of the data matrices. The evolutionary feature selection formulation can uncover shared features in clustering from time-evolving data matrices. We show that the optimization problems involved are non-convex, non-smooth and non-separable. To compute the solutions efficiently, we develop a two-step procedure that optimizes the objective function iteratively.

Informacija

Autorius: D Kishore Babu
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2018
Knygos puslapių skaičius: 68
ISBN-10: 3659716154
ISBN-13: 9783659716157
Formatas: 220 x 150 x 5 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Formulizing Co-Clusters &Selection Methods Based On SVD in Data Mining“

Būtina įvertinti prekę

Goodreads reviews for „Formulizing Co-Clusters &Selection Methods Based On SVD in Data Mining“