Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

FORGERY DETECTION OF DIGITAL IMAGES: FORENSIC SCIENCE RESEARCH SUMMARY

-20% su kodu: BOOKS
50,54 
Įprasta kaina: 63,18 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
50,54 
Įprasta kaina: 63,18 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 63.1800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The current study indicates that deep learning may be effectively used in applications including picture categorization, image identification, and object recognition by using several CNN architectures. On altered and/or bigger datasets, cost-effective picture classification is accomplished, and enhanced image feature mapping is derived from related images in text metadata using CNNs. Given the limited association between feature labels and comparable (and/or unrelated) pictures, employing feature map representations is demonstrated to be cheaper and quicker, but it does not increase the quality of the image classifications, suggesting that this technique is not ideal for assessing quality. However, using the newly acquired learnt weights, the findings of the current study may inspire further research into alternative counterfeit detection methods. Overall, our study shows that metadata sampling and categorization need a highly disciplined scaling model, which can be scored by using a pre-trained model, and which may be further developed in future phases.

Informacija

Autorius: Sivaji U
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2024
Knygos puslapių skaičius: 68
ISBN-10: 6207484207
ISBN-13: 9786207484201
Formatas: 220 x 150 x 5 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „FORGERY DETECTION OF DIGITAL IMAGES: FORENSIC SCIENCE RESEARCH SUMMARY“

Būtina įvertinti prekę

Goodreads reviews for „FORGERY DETECTION OF DIGITAL IMAGES: FORENSIC SCIENCE RESEARCH SUMMARY“