Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Flexible Regression and Smoothing: Using GAMLSS in R

-15% su kodu: ENG15
124,86 
Įprasta kaina: 146,89 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
124,86 
Įprasta kaina: 146,89 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 146.8900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables. Key Features: Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R. Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning. R code integrated into the text for ease of understanding and replication. Supplemented by a website with code, data and extra materials. This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.

Informacija

Autorius: Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller,
Leidėjas: Chapman and Hall/CRC
Išleidimo metai: 2020
Knygos puslapių skaičius: 574
ISBN-10: 0367658062
ISBN-13: 9780367658069
Formatas: 254 x 178 x 31 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Flexible Regression and Smoothing: Using GAMLSS in R“

Būtina įvertinti prekę

Goodreads reviews for „Flexible Regression and Smoothing: Using GAMLSS in R“