Flexible and Generalized Uncertainty Optimization: Theory and Approaches

-15% su kodu: ENG15
91,15 
Įprasta kaina: 107,23 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
91,15 
Įprasta kaina: 107,23 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 107.2300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and are more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of the associated optimization model in detail. Written for graduate students and professionals in the broad field of optimization and operations research, this second edition has been revised and extended to include more worked examples and a section on interval multi-objective mini-max regret theory along with its solution method.

Informacija

Autorius: Luiz L. Salles-Neto, Weldon A. Lodwick,
Serija: Studies in Computational Intelligence
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2022
Knygos puslapių skaičius: 204
ISBN-10: 3030611825
ISBN-13: 9783030611828
Formatas: 235 x 155 x 12 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Flexible and Generalized Uncertainty Optimization: Theory and Approaches“

Būtina įvertinti prekę

Goodreads reviews for „Flexible and Generalized Uncertainty Optimization: Theory and Approaches“