Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

First-order and Stochastic Optimization Methods for Machine Learning

-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 237.1400 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Informacija

Autorius: Guanghui Lan
Serija: Springer Series in the Data Sciences
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2021
Knygos puslapių skaičius: 596
ISBN-10: 3030395707
ISBN-13: 9783030395704
Formatas: 235 x 155 x 32 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „First-order and Stochastic Optimization Methods for Machine Learning“

Būtina įvertinti prekę