Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Feature Selection For Intrusion Detection Systems: Using data mining techniques

-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
67,17 
Įprasta kaina: 79,02 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 79.0200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Network security is a serious global concern. The increasing prevalence of malware and incidents of attacks hinders the utilization of the Internet to its greatest benefit and incur significant economic losses. The traditional approaches in securing systems against threats are designing mechanisms that create a protective shield, almost always with vulnerabilities. This has created Intrusion Detection Systems to be developed that complement traditional approaches. However, with the advancement of computer technology, the behavior of intrusions has become complex that makes the work of security experts hard to analyze and detect intrusions. In order to address these challenges, data mining techniques have become a possible solution. However, the performance of data mining algorithms is affected when no optimized features are provided. This is because, complex relationships can be seen as well between the features and intrusion classes contributing to high computational costs in processing tasks, subsequently leads to delays in identifying intrusions. Feature selection is thus important in detecting intrusions by allowing the data mining system to focus on what is really important.

Informacija

Autorius: Yogesh Kumar, Krishan Kumar, Gulshan Kumar,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2014
Knygos puslapių skaičius: 100
ISBN-10: 3659515108
ISBN-13: 9783659515101
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Feature Selection For Intrusion Detection Systems: Using data mining techniques“

Būtina įvertinti prekę