Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.

Informacija

Autorius: Verónica Bolón-Canedo, Amparo Alonso-Betanzos, Noelia Sánchez-Maroño,
Serija: Artificial Intelligence: Foundations, Theory, and Algorithms
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2016
Knygos puslapių skaičius: 164
ISBN-10: 3319366432
ISBN-13: 9783319366432
Formatas: 235 x 155 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Feature Selection for High-Dimensional Data“

Būtina įvertinti prekę

Goodreads reviews for „Feature Selection for High-Dimensional Data“