Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components

-15% su kodu: ENG15
177,82 
Įprasta kaina: 209,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
177,82 
Įprasta kaina: 209,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 209.2000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components surveys the literature on factor extraction in the context of Dynamic Factor Models (DFMs) fitted to multivariate systems of economic and financial variables. Many of the most popular factor extraction procedures often used in empirical applications are based on either Principal Components (PC) or Kalman filter and smoothing (KFS) techniques. First, the authors show that the KFS factors are a weighted average of the contemporaneous information (PC factors) and the past information and that the weights of the latter are negligible unless the factors are closed to the non-stationarity boundary and/or their loadings are pretty small when compared with the variance-covariance matrix of the idiosyncratic components. Second, the authors survey how PC and KFS deal with several issues often faced in the context of extracting factors from real data systems. In particular, they describe PC and KFS procedures to deal with mixed frequencies and missing observations, structural breaks, non-stationarity, Markov-switching parameters or multi-level factor structures. In general, KFS is very flexible to deal with these issues.

Informacija

Autorius: Esther Ruiz, Pilar Poncela,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2022
Knygos puslapių skaičius: 124
ISBN-10: 1638280967
ISBN-13: 9781638280965
Formatas: 234 x 156 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components“

Būtina įvertinti prekę

Goodreads reviews for „Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components“