Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Explaining the Success of Nearest Neighbor Methods in Prediction

-15% su kodu: ENG15
200,90 
Įprasta kaina: 236,35 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
200,90 
Įprasta kaina: 236,35 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 236.3500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Many modern methods for prediction leverage nearest neighbor search to find past training examples most similar to a test example, an idea that dates back in text to at least the 11th century and has stood the test of time. This monograph explains the success of these methods, both in theory, covering foundational nonasymptotic statistical guarantees on nearest-neighbor-based regression and classification, and in practice, gathering prominent methods for approximate nearest neighbor search that have been essential to scaling prediction systems reliant on nearest neighbor analysis to handle massive datasets. Furthermore, it looks at connections to learning distances for use with nearest neighbor methods, including how random decision trees and ensemble methods learn nearest neighbor structure, as well as recent developments in crowdsourcing and graphons.

Informacija

Autorius: George H. Chen, Devavrat Shah,
Leidėjas: Now Publishers Inc
Išleidimo metai: 2018
Knygos puslapių skaičius: 266
ISBN-10: 1680834541
ISBN-13: 9781680834543
Formatas: 234 x 156 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Explaining the Success of Nearest Neighbor Methods in Prediction“

Būtina įvertinti prekę

Goodreads reviews for „Explaining the Success of Nearest Neighbor Methods in Prediction“