Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Evolution Equations Arising in the Modelling of Life Sciences

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book deals with the modeling, analysis and simulation of problems arising in the life sciences, and especially in biological processes. The models and findings presented result from intensive discussions with microbiologists, doctors and medical staff, physicists, chemists and industrial engineers and are based on experimental data. They lead to a new class of degenerate density-dependent nonlinear reaction-diffusion convective equations that simultaneously comprise two kinds of degeneracy: porous-medium and fast-diffusion type degeneracy. To date, this class is still not clearly understood in the mathematical literature and thus especially interesting. The author both derives realistic life science models and their above-mentioned governing equations of the degenerate types and systematically studies these classes of equations. In each concrete case well-posedness, the dependence of solutions on boundary conditions reflecting some properties of the environment, and the large-time behavior of solutions are investigated and in some instances also studied numerically.

Informacija

Autorius: Messoud Efendiev
Serija: International Series of Numerical Mathematics
Leidėjas: Birkhäuser Basel
Išleidimo metai: 2013
Knygos puslapių skaičius: 232
ISBN-10: 3034806140
ISBN-13: 9783034806145
Formatas: 241 x 160 x 18 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Evolution Equations Arising in the Modelling of Life Sciences“

Būtina įvertinti prekę

Goodreads reviews for „Evolution Equations Arising in the Modelling of Life Sciences“