Estimation of Linear Models Under Heteroscedasticity: Inference with Heteroscedastic Errors

-15% su kodu: ENG15
87,97 
Įprasta kaina: 103,49 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
87,97 
Įprasta kaina: 103,49 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 103.4900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

In the Present book Chapter I is an introductory one. It contains the general introduction about the problem of heteroscedasticity. Chapter II describes some aspects of linear models with their inferential problems. It deals with some basic statistical results about Gauss-Markov linear model besides the restricted least squares estimation and its application to the tests of general linear hypotheses. Chapter III presents a brief review on the existing estimation methods for linear models under the various specifications of heteroscedastic variances. Chapter IV deals with the analysis and examination of different types of residuals with their applications in the regression analysis. It also contains the restricted residuals in ¿Seemingly Unrelated Regression¿ (SUR) systems. Chapter V proposes some new estimation procedures for linear models under heteroscedasticity. Chapter VI depicts the conclusions .Several references articles regarding the estimation for linear models under heteroscedasticity have been presented under a title ¿BIBLIOGRAPHY¿.

Informacija

Autorius: R. V. S. Prasad, Balasiddamuni Pagadala, C. L. Kantha Rao,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2014
Knygos puslapių skaičius: 164
ISBN-10: 3659503452
ISBN-13: 9783659503450
Formatas: 220 x 150 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Estimation of Linear Models Under Heteroscedasticity: Inference with Heteroscedastic Errors“

Būtina įvertinti prekę

Goodreads reviews for „Estimation of Linear Models Under Heteroscedasticity: Inference with Heteroscedastic Errors“