Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Estimating Ore Grade Using Evolutionary Machine Learning Models

-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
201,57 
Įprasta kaina: 237,14 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 237.1400 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book examines the abilities of new machine learning models for predicting ore grade in mining engineering. A variety of case studies are examined in this book. A motivation for preparing this book was the absence of robust models for estimating ore grade. Models of current books can also be used for the different sciences because they have high capabilities for estimating different variables. Mining engineers can use the book to determine the ore grade accurately. This book helps identify mineral-rich regions for exploration and exploitation. Exploration costs can be decreased by using the models in the current book. In this book, the author discusses the new concepts in mining engineering, such as uncertainty in ore grade modeling. Ensemble models are presented in this book to estimate ore grade. In the book, readers learn how to construct advanced machine learning models for estimating ore grade. The authors of this book present advanced and hybrid models used to estimate oregrade instead of the classic methods such as kriging. The current book can be used as a comprehensive handbook for estimating ore grades. Industrial managers and modelers can use the models of the current books. Each level of ore grade modeling is explained in the book. In this book, advanced optimizers are presented to train machine learning models. Therefore, the book can also be used by modelers in other fields. The main motivation of this book is to address previous shortcomings in the modeling process of ore grades. The scope of this book includes mining engineering, soft computing models, and artificial intelligence.

Informacija

Autorius: Mohammad Ehteram, Maliheh Abbaszadeh, Saeed Soltani-Mohammadi, Zohreh Sheikh Khozani,
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2022
Knygos puslapių skaičius: 116
ISBN-10: 9811981051
ISBN-13: 9789811981050
Formatas: 241 x 160 x 13 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Estimating Ore Grade Using Evolutionary Machine Learning Models“

Būtina įvertinti prekę

Goodreads reviews for „Estimating Ore Grade Using Evolutionary Machine Learning Models“