Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Estimates of the Neumann Problem

-15% su kodu: ENG15
156,72 
Įprasta kaina: 184,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
156,72 
Įprasta kaina: 184,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 184.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The ¿¿ Neumann problem is probably the most important and natural example of a non-elliptic boundary value problem, arising as it does from the Cauchy-Riemann equations. It has been known for some time how to prove solvability and regularity by the use of L2 methods. In this monograph the authors apply recent methods involving the Heisenberg group to obtain parametricies and to give sharp estimates in various function spaces, leading to a better understanding of the ¿¿ Neumann problem. The authors have added substantial background material to make the monograph more accessible to students. Originally published in 1977. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Informacija

Autorius: Peter Charles Greiner
Leidėjas: Princeton University Press
Išleidimo metai: 2016
Knygos puslapių skaičius: 202
ISBN-10: 0691643830
ISBN-13: 9780691643830
Formatas: 240 x 161 x 16 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Estimates of the Neumann Problem“

Būtina įvertinti prekę

Goodreads reviews for „Estimates of the Neumann Problem“