Equations of Motion for Incompressible Viscous Fluids: With Mixed Boundary Conditions

-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 220.2000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This monograph explores the motion of incompressible fluids by presenting and incorporating various boundary conditions possible for real phenomena. The authors¿ approach carefully walks readers through the development of fluid equations at the cutting edge of research, and the applications of a variety of boundary conditions to real-world problems. Special attention is paid to the equivalence between partial differential equations with a mixture of various boundary conditions and their corresponding variational problems, especially variational inequalities with one unknown. A self-contained approach is maintained throughout by first covering introductory topics, and then moving on to mixtures of boundary conditions, a thorough outline of the Navier-Stokes equations, an analysis of both the steady and non-steady Boussinesq system, and more. Equations of Motion for Incompressible Viscous Fluids is ideal for postgraduate students and researchers in the fields of fluid equations, numerical analysis, and mathematical modelling.

Informacija

Autorius: Daomin Cao, Tujin Kim,
Serija: Advances in Mathematical Fluid Mechanics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2022
Knygos puslapių skaičius: 380
ISBN-10: 3030786617
ISBN-13: 9783030786618
Formatas: 235 x 155 x 21 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Equations of Motion for Incompressible Viscous Fluids: With Mixed Boundary Conditions“

Būtina įvertinti prekę

Goodreads reviews for „Equations of Motion for Incompressible Viscous Fluids: With Mixed Boundary Conditions“