Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases

-15% su kodu: ENG15
65,43 
Įprasta kaina: 76,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
65,43 
Įprasta kaina: 76,98 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 76.9800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Use ensemble learning techniques and models to improve your machine learning results.

Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras, Scikit Learn, TensorFlow, PyTorch, and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems, including time series data, imaging data, and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook.
What You Will Learn Understand the techniques and methods utilized in ensemble learning Use bagging, stacking, and boosting to improve performance of your machine learning projects by combining models to decrease variance, improve predictions, and reduce bias Enhance your machine learning architecture with ensemble learning Who This Book Is For Data scientists and machine learning engineers keen on exploring ensemble learning

Informacija

Autorius: Mayank Jain, Alok Kumar,
Leidėjas: Apress
Išleidimo metai: 2020
Knygos puslapių skaičius: 152
ISBN-10: 1484259394
ISBN-13: 9781484259399
Formatas: 235 x 155 x 9 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases“

Būtina įvertinti prekę