Emotive and personality parameters in recommender systems: Recognition and usage of user-centric data for user and item modeling in content retrieval systems

-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 70.5300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The growing amount of multimedia content is making it hard for end users to find the relevant content. The goal of recommender systems is to assist the users by finding a small subset of relevant multimedia items for each user. State-of-the-art techniques for recommending content are very data-centric. The progress beyond the state-of-the-art presented in this book consists in introducing new parameters based on emotions and personality that explain a substantial part of variance in the end users'' preferences. The book covers the detection of emotions and personality factors of end users. The book then shows clearly how to use these user-centric data to model end users and thus improve the performance of a recommender system for images. The book will serve as a guideline and inspiration for practitioners and academics in content retrieval and affecting computing.

Informacija

Autorius: Marko Tkal¿i¿, Andrej Ko¿ir, Jurij F. Tasi¿,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2011
Knygos puslapių skaičius: 104
ISBN-10: 3844333096
ISBN-13: 9783844333091
Formatas: 220 x 150 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Emotive and personality parameters in recommender systems: Recognition and usage of user-centric data for user and item modeling in content retrieval systems“

Būtina įvertinti prekę

Goodreads reviews for „Emotive and personality parameters in recommender systems: Recognition and usage of user-centric data for user and item modeling in content retrieval systems“