Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Elliptic Differential Operators and Spectral Analysis

-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 220.2000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations.The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.

Informacija

Autorius: W. D. Evans, D. E. Edmunds,
Serija: Springer Monographs in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2018
Knygos puslapių skaičius: 336
ISBN-10: 3030021246
ISBN-13: 9783030021245
Formatas: 241 x 160 x 24 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Elliptic Differential Operators and Spectral Analysis“

Būtina įvertinti prekę

Goodreads reviews for „Elliptic Differential Operators and Spectral Analysis“