Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Dynamics Near Quantum Criticality in Two Space Dimensions

-20% su kodu: BOOKS
135,50 
Įprasta kaina: 169,38 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
135,50 
Įprasta kaina: 169,38 
-20% su kodu: BOOKS
Kupono kodas: BOOKS
Akcija baigiasi: 2025-03-09
-20% su kodu: BOOKS
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This work addresses dynamical aspects of quantum criticality in two space dimensions. It probes two energy scales: the amplitude (Higgs) mode, which describes fluctuations of the order parameter amplitude in the broken symmetry phase and the dual vortex superfluid stiffness. The results demonstrate that the amplitude mode can be probed arbitrarily close to criticality in the universal line shape of the scalar susceptibility and the optical conductivity. The hallmark of quantum criticality is the emergence of softening energy scales near the phase transition. In addition, the author employs the charge-vortex duality to show that the capacitance of the Mott insulator near the superfluid to insulator phase transition serves as a probe for the dual vortex superfluid stiffness. The numerical methods employed are described in detail, in particular a worm algorithm for O(N) relativistic models and methods for numerical analytic continuation of quantum Monte Carlo data. The predictions obtained are particularly relevant to recent experiments in cold atomic systems and disordered superconductors.

Informacija

Autorius: Snir Gazit
Serija: Springer Theses
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2015
Knygos puslapių skaičius: 88
ISBN-10: 3319193538
ISBN-13: 9783319193533
Formatas: 241 x 160 x 11 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Dynamics Near Quantum Criticality in Two Space Dimensions“

Būtina įvertinti prekę

Goodreads reviews for „Dynamics Near Quantum Criticality in Two Space Dimensions“