Dynamic Data Analysis: Modeling Data with Differential Equations

-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
215,97 
Įprasta kaina: 254,08 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 254.0800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.

Informacija

Autorius: Giles Hooker, James Ramsay,
Serija: Springer Series in Statistics
Leidėjas: Springer New York
Išleidimo metai: 2018
Knygos puslapių skaičius: 248
ISBN-10: 1493984128
ISBN-13: 9781493984121
Formatas: 235 x 155 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Dynamic Data Analysis: Modeling Data with Differential Equations“

Būtina įvertinti prekę

Goodreads reviews for „Dynamic Data Analysis: Modeling Data with Differential Equations“