Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Divergent Series, Summability and Resurgence III: Resurgent Methods and the First Painlevé Equation

-15% su kodu: ENG15
86,38 
Įprasta kaina: 101,62 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
86,38 
Įprasta kaina: 101,62 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 101.6200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called ¿bridge equation¿, which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1.

Informacija

Autorius: Eric Delabaere
Serija: Lecture Notes in Mathematics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2016
Knygos puslapių skaičius: 252
ISBN-10: 3319289993
ISBN-13: 9783319289991
Formatas: 235 x 155 x 14 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Divergent Series, Summability and Resurgence III: Resurgent Methods and the First Painlevé Equation“

Būtina įvertinti prekę

Goodreads reviews for „Divergent Series, Summability and Resurgence III: Resurgent Methods and the First Painlevé Equation“