Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Distributed Learning with a Local Touch: Improving Efficiency in Multiparty Learning

-15% su kodu: ENG15
34,37 
Įprasta kaina: 40,44 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
34,37 
Įprasta kaina: 40,44 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 40.4400 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Multiparty learning as an emerging topic, many of the related frameworks and ap-plications are proposed. In this section, we explore the extent of these frameworks and technologies. Yang et al.72 provide a comprehensive survey of existing works on a secure fed-erated learning framework. Bonawitz et al.8 build a scalable production system for Federated Learning in the domain of mobile devices. Kone¿n`yetal.30 propose ways to reduce communication costs in federated learning. Nishio and Yonetani44 propose a new Federated Learning protocol, FedCS, which can actively manage computing workers based on their resource conditions. Zhao et al.75 notice that conventional federated learning fails on learning non-IID data and propose a strategy to improve training on non-IID data by creating a small subset of data which is globally shared between all the edge devices. Smith et al.63 propose fed-erated multi-task learning, which is a novel systems-aware optimization method, MOCHA.

Informacija

Autorius: Shiva
Leidėjas: tredition
Išleidimo metai: 2024
Knygos puslapių skaičius: 84
ISBN-10: 3384254228
ISBN-13: 9783384254221
Formatas: 234 x 155 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Distributed Learning with a Local Touch: Improving Efficiency in Multiparty Learning“

Būtina įvertinti prekę