Differential Privacy for Dynamic Data

-15% su kodu: ENG15
93,58 
Įprasta kaina: 110,09 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
93,58 
Įprasta kaina: 110,09 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 110.0900 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This Springer brief provides the necessary foundations to understand differential privacy and describes practical algorithms enforcing this concept for the publication of real-time statistics based on sensitive data. Several scenarios of interest are considered, depending on the kind of estimator to be implemented and the potential availability of prior public information about the data, which can be used greatly to improve the estimators' performance. The brief encourages the proper use of large datasets based on private data obtained from individuals in the world of the Internet of Things and participatory sensing. For the benefit of the reader, several examples are discussed to illustrate the concepts and evaluate the performance of the algorithms described. These examples relate to traffic estimation, sensing in smart buildings, and syndromic surveillance to detect epidemic outbreaks.

Informacija

Autorius: Jerome Le Ny
Serija: SpringerBriefs in Control, Automation and Robotics
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2020
Knygos puslapių skaičius: 124
ISBN-10: 3030410382
ISBN-13: 9783030410384
Formatas: 235 x 155 x 8 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Differential Privacy for Dynamic Data“

Būtina įvertinti prekę

Goodreads reviews for „Differential Privacy for Dynamic Data“