Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Differential equations and applications: Dynamic Vibration Equations

-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
59,95 
Įprasta kaina: 70,53 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 70.5300 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book examines the time vibration of the displacement of a structure due to the internal forces, with no damping or external forcing. Practically, vibrations decay with time but in theory these vibrations do not actually decay. For vibrations due to purely internal forces, the dynamic systems are referred to as conservative systems. The methods of solution adopted for solving non-linear single-degree-of-freedom problems may be extended to multi-degree-of-freedom problems. There are many studies in literature on the application of these methods of solution to linear problems and yet so few have been applied to the non-linear problems. Dynamic vibration equations are of great importance not only for understanding the dynamic motion of structures, but also for providing knowledge of differential equations to mathematicians. Several attempts have been made to study dynamic vibration equations. This book gives a nicer approach to numerical solutions to second order ordinary differential equations. It also gives good examples for learners easy understanding of the techniques used.

Informacija

Autorius: Aminer Titus, Benard Okelo,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2011
Knygos puslapių skaičius: 56
ISBN-10: 3846526096
ISBN-13: 9783846526095
Formatas: 220 x 150 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Differential equations and applications: Dynamic Vibration Equations“

Būtina įvertinti prekę

Goodreads reviews for „Differential equations and applications: Dynamic Vibration Equations“