Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Deep Learning in Solar Astronomy

-15% su kodu: ENG15
79,18 
Įprasta kaina: 93,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
79,18 
Įprasta kaina: 93,15 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 93.1500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition. Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices. This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.

Informacija

Autorius: Long Xu, Xin Huang, Yihua Yan,
Serija: SpringerBriefs in Computer Science
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2022
Knygos puslapių skaičius: 108
ISBN-10: 9811927456
ISBN-13: 9789811927454
Formatas: 235 x 155 x 7 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Deep Learning in Solar Astronomy“

Būtina įvertinti prekę

Goodreads reviews for „Deep Learning in Solar Astronomy“