Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Deep Learning for Hyperspectral Image Analysis and Classification

-15% su kodu: ENG15
244,77 
Įprasta kaina: 287,96 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
244,77 
Įprasta kaina: 287,96 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 287.9600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.

Informacija

Autorius: Atif Mughees, Linmi Tao,
Serija: Engineering Applications of Computational Methods
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2021
Knygos puslapių skaičius: 220
ISBN-10: 9813344199
ISBN-13: 9789813344198
Formatas: 241 x 160 x 18 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Deep Learning for Hyperspectral Image Analysis and Classification“

Būtina įvertinti prekę