Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.
Autorius: | Antonio Artuñedo |
Serija: | Springer Theses |
Leidėjas: | Springer Nature Switzerland |
Išleidimo metai: | 2020 |
Knygos puslapių skaičius: | 216 |
ISBN-10: | 3030459047 |
ISBN-13: | 9783030459048 |
Formatas: | 241 x 160 x 18 mm. Knyga kietu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Decision-making Strategies for Automated Driving in Urban Environments“