Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Data-Driven Modelling of Gas Turbine Engines

-15% su kodu: ENG15
74,50 
Įprasta kaina: 87,65 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
74,50 
Įprasta kaina: 87,65 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 87.6500 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Nowadays, gas turbine engines (GTE) are widely used in jet engines, oil field platforms, power plants, refineries, petrochemical plants, and gas stations for power generation. One of the best strategies to manufacture GTE with higher efficiency, durability, and reliability is to employ modelling and simulation techniques. Remarkable studies have been done so far in the area of data-driven modelling of GTE, each with its own advantages and limitations. The outcome of these activities has had significant impacts on optimization and cost-cuts of design and manufacturing processes, and improvements in the condition monitoring, operation, fault diagnosis, and maintenance planning of these systems. This book investigates and compares novel linear and nonlinear data-driven modelling of gas turbine engines. The linear models consist of Ridge, Lasso, and Multi-Task Elastic-Net models, which are built based on linear regressions. A nonlinear model of the system is set up and validated by employing recurrent neural networks (RNN). It is shown that the resulting RNN model can be applied reliably for performance prediction of the engine by following changes in the system inputs.

Informacija

Autorius: Hamid Asgari
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2023
Knygos puslapių skaičius: 96
ISBN-10: 6206162060
ISBN-13: 9786206162063
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Data-Driven Modelling of Gas Turbine Engines“

Būtina įvertinti prekę

Goodreads reviews for „Data-Driven Modelling of Gas Turbine Engines“