Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software

-15% su kodu: ENG15
244,77 
Įprasta kaina: 287,96 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
244,77 
Įprasta kaina: 287,96 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 287.9600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

This book presents the signal processing and data mining challenges encountered in drilling engineering, and describes the methods used to overcome them. In drilling engineering, many signal processing technologies are required to solve practical problems, such as downhole information transmission, spatial attitude of drillstring, drillstring dynamics, seismic activity while drilling, among others. This title attempts to bridge the gap between the signal processing and data mining and oil and gas drilling engineering communities. There is an urgent need to summarize signal processing and data mining issues in drilling engineering so that practitioners in these fields can understand each other in order to enhance oil and gas drilling functions. In summary, this book shows the importance of signal processing and data mining to researchers and professional drilling engineers and open up a new area of application for signal processing and data mining scientists.

Informacija

Autorius: Qilong Xue
Serija: Information Fusion and Data Science
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2019
Knygos puslapių skaičius: 328
ISBN-10: 3030340341
ISBN-13: 9783030340346
Formatas: 241 x 160 x 24 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software“

Būtina įvertinti prekę

Goodreads reviews for „Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software“