Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

COVID-19 Cases Outbreak Prediction using Supervise Learning Models

-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
48,81 
Įprasta kaina: 57,42 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 57.4200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Authorities all over the world are using COVID-19 episode expectation models to make informed decisions and maintain necessary control steps. AI (ML)-based deciding components have proven to be useful in predicting perioperative outcomes and improving the dynamic of possible operations. For a long time, machine learning models have been used in a variety of applications that required recognisable proof and the prioritisation of unfavourable factors for a risk. To cope with anticipating problems, a few expectation strategies are commonly used. Authorities all over the world are using COVID-19 episode expectation models to make informed decisions and maintain necessary controls. AI (ML)-based deciding components have shown their worth in predicting perioperative outcomes and improving the dynamic of future operations. For a long time, machine learning models have been used in a variety of applications that needed recognisable proof and prioritisation of unfavourable factors for a danger. To cope with expecting problems, a few expectation strategies are in use.

Informacija

Autorius: Sheshang Degadwala, Brijesh Patel, Dhairya Vyas,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2021
Knygos puslapių skaičius: 68
ISBN-10: 6203863084
ISBN-13: 9786203863086
Formatas: 220 x 150 x 5 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „COVID-19 Cases Outbreak Prediction using Supervise Learning Models“

Būtina įvertinti prekę

Goodreads reviews for „COVID-19 Cases Outbreak Prediction using Supervise Learning Models“