Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Continuous Flows in the Plane

-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
71,98 
Įprasta kaina: 84,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 84.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Topological Dynamics has its roots deep in the theory of differential equations, specifically in that portion called the "qualitative theory". The most notable early work was that of Poincare and Bendixson, regarding stability of solutions of differential equations, and the subject has grown around this nucleus. It has developed now to a point where it is fully capable of standing on its own feet as a branch of Mathematics studied for its intrinsic interest and beauty, and since the publication of Topological Dynamics by Gottschalk and Hedlund, it has been the subject of widespread study in its own right, as well as for the light it sheds on differential equations. The Bibliography for Topological Dyna­ mics by Gottschalk contains 1634 entries in the 1969 edition, and progress in the field since then has been even more prodigious. The study of dynamical systems is an idealization of the physical studies bearing such names as aerodynamics, hydrodynamics, electrodynamics, etc. We begin with some space (call it X) and we imagine in this space some sort of idealized particles which change position as time passes.

Informacija

Autorius: A. Beck
Serija: Grundlehren der mathematischen Wissenschaften
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2012
Knygos puslapių skaičius: 480
ISBN-10: 3642655505
ISBN-13: 9783642655500
Formatas: 229 x 152 x 26 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Continuous Flows in the Plane“

Būtina įvertinti prekę

Goodreads reviews for „Continuous Flows in the Plane“