Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o
Autorius: | Kenneth S. Williams, J. Urbanowicz, |
Serija: | Mathematics and Its Applications |
Leidėjas: | Springer Netherlands |
Išleidimo metai: | 2000 |
Knygos puslapių skaičius: | 276 |
ISBN-10: | 0792363795 |
ISBN-13: | 9780792363798 |
Formatas: | 241 x 160 x 20 mm. Knyga kietu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Congruences for L-Functions“