Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
Conformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of such operators are the Yamabe-, the Paneitz-, the Dirac- and the twistor operator. The aim of the seminar was to present the basic ideas and some of the recent developments around Q-curvature and conformal holonomy. The part on Q-curvature discusses its origin, its relevance in geometry, spectral theory and physics. Here the influence of ideas which have their origin in the AdS/CFT-correspondence becomes visible. The part on conformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries.
Autorius: | Andreas Juhl, Helga Baum, |
Serija: | Oberwolfach Seminars |
Leidėjas: | Birkhäuser Basel |
Išleidimo metai: | 2010 |
Knygos puslapių skaičius: | 164 |
ISBN-10: | 3764399082 |
ISBN-13: | 9783764399085 |
Formatas: | 239 x 170 x 10 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Conformal Differential Geometry: Q-Curvature and Conformal Holonomy“