Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Computational Models for Upgrading Traditional Agriculture

-15% su kodu: ENG15
32,91 
Įprasta kaina: 38,72 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
32,91 
Įprasta kaina: 38,72 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 38.7200 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Sustainable agriculture means that we have to fulfill our present needs without bad effect on the next generations needs. The concept of sustainable development emerges the areas of Health Environment, Economic Profitability, Social and Economic Equity of the human life. This study introduces the concept of sustainable agricultural methods and techniques. The comparison of different crop production and their area has been studied and analyzed. The analysis of Pakistan¿s total land has been done and suggested the method of forest farming to increase the production of certain products. A number of different approaches for sustainable agricultural methods have been discussed. The impacts of water and environmental pollution, ecological degradation and deforestation have been highlighted to secure the existing and future generation. In this study data analysis process for the comparison of different approaches has been used to shift on sustainable agriculture. It is described that Pakistan¿s major crops production can be increased with same resources by applying sustainable methods and techniques.

Informacija

Autorius: Malik Sikander Hayat Khiyal, Farzana Wali Akbar,
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2018
Knygos puslapių skaičius: 88
ISBN-10: 6139864496
ISBN-13: 9786139864492
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Computational Models for Upgrading Traditional Agriculture“

Būtina įvertinti prekę

Goodreads reviews for „Computational Models for Upgrading Traditional Agriculture“