Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>
Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..¿ ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm.
Autorius: | A. Majda |
Serija: | Applied Mathematical Sciences |
Leidėjas: | Springer US |
Išleidimo metai: | 1984 |
Knygos puslapių skaičius: | 172 |
ISBN-10: | 0387960376 |
ISBN-13: | 9780387960371 |
Formatas: | 235 x 155 x 10 mm. Knyga minkštu viršeliu |
Kalba: | Anglų |
Parašykite atsiliepimą apie „Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables“