Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms: A Convex Optimization Approach

-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
187,17 
Įprasta kaina: 220,20 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 220.2000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need forthe CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly useful for researchers who have just entered into the exciting field of CS-MRI and would like to quickly go through the developments to date without diving into the detailed mathematical analysis. Finally, it also discusses recent trends and future research directions for implementation of CS-MRI in clinical practice, particularly in Bio- and Neuro-informatics applications.

Informacija

Autorius: Sumit Datta, Bhabesh Deka,
Serija: Springer Series on Bio- and Neurosystems
Leidėjas: Springer Nature Singapore
Išleidimo metai: 2019
Knygos puslapių skaičius: 136
ISBN-10: 9811335966
ISBN-13: 9789811335969
Formatas: 241 x 160 x 13 mm. Knyga kietu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms: A Convex Optimization Approach“

Būtina įvertinti prekę

Goodreads reviews for „Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms: A Convex Optimization Approach“