Comprehensive Analysis of Swarm Based Classifiers and Bayesian Based Models for Epilepsy Risk Level Classification from EEG Signals

-15% su kodu: ENG15
36,69 
Įprasta kaina: 43,16 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
36,69 
Įprasta kaina: 43,16 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 43.1600 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This project presents the performance analysis of Particle swarm optimization (PSO), hybrid PSO and Bayesian classifier to calculate the epileptic risk level from electroencephalogram (EEG) inputs. PSO is an optimization technique which is initialized with a population of random solutions and searches for optima by updating generations. PSO is initialized with a group of random particles (solutions) and then searches for optima by updating generations. Hybrid PSO differs from ordinary PSO by calculating inertia weight to avoid the local minima problem. Bayesian classifier works on the principle of Bayes¿ rule in which it is the probability based theorem. The results of PSO, hybrid PSO and Bayesian classifier are calculated and their performance is analyzed using performance index, quality value, cost function and classification rate in calculating the epileptic risk level from EEG.

Informacija

Autorius: Harikumar Rajaguru, Sunil Kumar Prabhakar,
Leidėjas: Anchor Academic Publishing
Išleidimo metai: 2017
Knygos puslapių skaičius: 52
ISBN-10: 3960671229
ISBN-13: 9783960671220
Formatas: 220 x 155 x 4 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Comprehensive Analysis of Swarm Based Classifiers and Bayesian Based Models for Epilepsy Risk Level Classification from EEG Signals“

Būtina įvertinti prekę

Goodreads reviews for „Comprehensive Analysis of Swarm Based Classifiers and Bayesian Based Models for Epilepsy Risk Level Classification from EEG Signals“