Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Composite NUV Priors and Applications

-15% su kodu: ENG15
78,29 
Įprasta kaina: 92,11 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
78,29 
Įprasta kaina: 92,11 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 92.1100 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

Normal with unknown variance (NUV) priors are a central idea of sparse Bayesian learning and allow variational representations of non-Gaussian priors. More specifically, such variational representations can be seen as parameterized Gaussians, wherein the parameters are generally unknown. The advantage is apparent: for fixed parameters, NUV priors are Gaussian, and hence computationally compatible with Gaussian models. Moreover, working with (linear-)Gaussian models is particularly attractive since the Gaussian distribution is closed under affine transformations, marginalization, and conditioning. Interestingly, the variational representation proves to be rather universal than restrictive: many common sparsity-promoting priors (among them, in particular, the Laplace prior) can be represented in this manner. In estimation problems, parameters or variables of the underlying model are often subject to constraints (e.g., discrete-level constraints). Such constraints cannot adequately be represented by linear-Gaussian models and generally require special treatment. To handle such constraints within a linear-Gaussian setting, we extend the idea of NUV priors beyond its original use for sparsity. In particular, we study compositions of existing NUV priors, referred to as composite NUV priors, and show that many commonly used model constraints can be represented in this way.

Informacija

Autorius: Raphael Urs Keusch
Serija: Series in Signal and Information Processing
Leidėjas: Hartung-Gorre
Išleidimo metai: 2022
Knygos puslapių skaičius: 274
ISBN-10: 3866287682
ISBN-13: 9783866287686
Formatas: 210 x 148 x 18 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Composite NUV Priors and Applications“

Būtina įvertinti prekę