Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Complexity Lower Bounds using Linear Algebra

-15% su kodu: ENG15
199,56 
Įprasta kaina: 234,78 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
199,56 
Įprasta kaina: 234,78 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 234.7800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

While rapid progress has been made on upper bounds (algorithms), progress on lower bounds on the complexity of explicit problems has remained slow despite intense efforts over several decades. As is natural with typical impossibility results, lower bound questions are hard mathematical problems and hence are unlikely to be resolved by ad hoc attacks. Instead, techniques based on mathematical notions that capture computational complexity are necessary. Complexity Lower Bounds using Linear Algebra surveys several techniques for proving lower bounds in Boolean, algebraic, and communication complexity based on certain linear algebraic approaches. The common theme among these approaches is to study robustness measures of matrix rank that capture the complexity in a given model. Suitably strong lower bounds on such robustness functions of explicit matrices lead to important consequences in the corresponding circuit or communication models. Understanding the inherent computational complexity of problems is of fundamental importance in mathematics and theoretical computer science. Complexity Lower Bounds using Linear Algebra is an invaluable reference for anyone working in the field.

Informacija

Autorius: Satyanarayana V. Lokam
Leidėjas: Now Publishers Inc
Išleidimo metai: 2009
Knygos puslapių skaičius: 176
ISBN-10: 1601982429
ISBN-13: 9781601982421
Formatas: 234 x 156 x 10 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Complexity Lower Bounds using Linear Algebra“

Būtina įvertinti prekę