Complex Network Growing Model Using Downlink Motifs

-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
43,93 
Įprasta kaina: 51,68 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 51.6800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Understanding the underlying architecture of biological networks has been one of the major goals in systems biology and bioinformatics as it can provide insights in disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs, which are small subgraphs of specific types and appear more abundantly in GRNs than in other randomized networks. In fact, such motifs are considered to be the building blocks of complex networks and they help achieve the underlying robustness demonstrated by most biological networks. The goal of this thesis is to design biological network growing models. As the motif distribution in networks grown using preferential attachment based algorithms do not match that of the GRNs seen in model organisms like E.Coli and yeast,we hypothesize that such models at a single node level may not properly reproduce the observed degree and motif distributions of biological networks. Hence, we propose a new network growing algorithm wherein the idea is to grow the network one motif at a time.The accuracy of our algorithm was evaluated and show better performance than existing network growing models.

Informacija

Autorius: Ahmad F. Al Musawi
Leidėjas: Noor Publishing
Išleidimo metai: 2016
Knygos puslapių skaičius: 88
ISBN-10: 3330842202
ISBN-13: 9783330842205
Formatas: 220 x 150 x 6 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Complex Network Growing Model Using Downlink Motifs“

Būtina įvertinti prekę

Goodreads reviews for „Complex Network Growing Model Using Downlink Motifs“