Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Completeness and Reduction in Algebraic Complexity Theory

-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
143,97 
Įprasta kaina: 169,38 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 169.3800 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 20,00 

Knygos aprašymas

One of the most important and successful theories in computational complex­ ity is that of NP-completeness. This discrete theory is based on the Turing machine model and achieves a classification of discrete computational prob­ lems according to their algorithmic difficulty. Turing machines formalize al­ gorithms which operate on finite strings of symbols over a finite alphabet. By contrast, in algebraic models of computation, the basic computational step is an arithmetic operation (or comparison) of elements of a fixed field, for in­ stance of real numbers. Hereby one assumes exact arithmetic. In 1989, Blum, Shub, and Smale [12] combined existing algebraic models of computation with the concept of uniformity and developed a theory of NP-completeness over the reals (BSS-model). Their paper created a renewed interest in the field of algebraic complexity and initiated new research directions. The ultimate goal of the BSS-model (and its future extensions) is to unite classical dis­ crete complexity theory with numerical analysis and thus to provide a deeper foundation of scientific computation (cf. [11, 101]). Already ten years before the BSS-paper, Valiant [107, 110] had proposed an analogue of the theory of NP-completeness in an entirely algebraic frame­ work, in connection with his famous hardness result for the permanent [108]. While the part of his theory based on the Turing approach (#P-completeness) is now standard and well-known among the theoretical computer science com­ munity, his algebraic completeness result for the permanents received much less attention.

Informacija

Autorius: Peter Bürgisser
Serija: Algorithms and Computation in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2010
Knygos puslapių skaičius: 184
ISBN-10: 3642086047
ISBN-13: 9783642086045
Formatas: 234 x 156 x 11 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Completeness and Reduction in Algebraic Complexity Theory“

Būtina įvertinti prekę