Combining Spatial and Non-spatial Data for Knowledge Discovery: Combined Mining of Spatial and Non-spatial Data

-15% su kodu: ENG15
96,65 
Įprasta kaina: 113,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
96,65 
Įprasta kaina: 113,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 113.7000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

This book is the result of innovative research in combining data from spatial and non-spatial sources for knowledge discovery. Though there has been an explosive growth in data collection and storage capability during the last two decades and many of the data repositories contain location data in the form of spatial references, the wealth of spatial information present in the data is seldom utilised. This unique work establishes that mining of GIS (or other forms of spatial) data in conjunction with the non-spatial data linked together by the location information can successfully detect broad spatial trends over large spatial extents, as well as localised spatial associations. The applicability of the novel framework and algorithmic solutions developed has been demonstrated using real sales data from a supermarket chain. The contents within these covers will be found useful both by data mining students and researchers, and practitioners who would like to use the solution developed for gaining business benefit.

Informacija

Autorius: Shubhamoy Dey
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2011
Knygos puslapių skaičius: 296
ISBN-10: 3845418834
ISBN-13: 9783845418834
Formatas: 220 x 150 x 18 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Combining Spatial and Non-spatial Data for Knowledge Discovery: Combined Mining of Spatial and Non-spatial Data“

Būtina įvertinti prekę

Goodreads reviews for „Combining Spatial and Non-spatial Data for Knowledge Discovery: Combined Mining of Spatial and Non-spatial Data“