Atnaujintas knygų su minimaliais defektais pasiūlymas! Naršykite ČIA >>

Classification and clustering of time series

-15% su kodu: ENG15
96,65 
Įprasta kaina: 113,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
96,65 
Įprasta kaina: 113,70 
-15% su kodu: ENG15
Kupono kodas: ENG15
Akcija baigiasi: 2025-03-03
-15% su kodu: ENG15
2025-02-28 113.7000 InStock
Nemokamas pristatymas į paštomatus per 11-15 darbo dienų užsakymams nuo 10,00 

Knygos aprašymas

Classification and clustering of time series is becoming an important area of research in several fields, such as economics, marketing, business, finance, medicine, biology, physics, psychology, zoology, and many others. For example, in economics we may be interested in classifying the economic situation of a country by looking at some time series indicators, such as Gross National Product, disposable income, unemployment rate or inflation rate. In this book, we propose new measures of distance between time series based on the autocorrelations, partial and inverse autocorrelations, and periodogram ordinates. The use of both hierarchical and nonhierarchical clustering algorithms is considered. We also introduce time and frequency domain based metrics for classification of time series with unequal lengths. As economic applications, we present two illustrative examples. The first uses economic time series data to identify similarities among industrial production series in the United States. The second applies the interpolated periodogram based method for classifying time series with unequal lengths of industrialized countries.

Informacija

Autorius: Jorge Caiado
Leidėjas: LAP LAMBERT Academic Publishing
Išleidimo metai: 2010
Knygos puslapių skaičius: 208
ISBN-10: 3838341813
ISBN-13: 9783838341811
Formatas: 220 x 150 x 13 mm. Knyga minkštu viršeliu
Kalba: Anglų

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Classification and clustering of time series“

Būtina įvertinti prekę

Goodreads reviews for „Classification and clustering of time series“